A Homogeneous Model for Monotone Mixed Horizontal Linear Complementarity Problems
نویسندگان
چکیده
We propose a homogeneous model for the class of mixed horizontal linear complementarity problems. The proposed homogeneous model is always solvable and provides the solution of the original problem if it exists, or a certificate of infeasibility otherwise. Our formulation preserves the sparsity of the original formulation and does not reduce to the homogeneous model of the equivalent standard linear complementarity problem. We study the properties of the model and show that interior-point methods can be used efficiently for the numerical solutions of the homogeneous problem. Numerical experiments show convincingly that it is much more efficient to use the proposed homogeneous model for the mixed horizontal linear complementarity problem than to use known homogeneous models for the equivalent standard linear complementarity problem.
منابع مشابه
Interior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones
We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in [5] depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang [17], where a vast set of conclusions concerning continuous trajectories is shown for monotone complementarity problems over t...
متن کاملA Homogeneous Model for P0 and P∗ Nonlinear Complementarity Problems
The homogeneous model for linear programs is an elegant means of obtaining the solution or certificate of infeasibility and has importance regardless of the method used for solving the problem, interior-point methods or other methods. In 1999, Andersen and Ye generalized this model to monotone complementarity problems (CPs) and showed that most of the desirable properties can be inherited as lo...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملError Bounds for R0-Type and Monotone Nonlinear Complementarity Problems
The paper generalizes the Mangasarian-Ren 10] error bounds for linear complementarity problems (LCPs) to nonlinear complementarity problems (NCPs). This is done by extending the concept of R 0-matrix to several R 0-type functions, which include a subset of monotone functions as a special case. Both local and global error bounds are obtained for the R 0-type and some monotone NCPs.
متن کامل